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1. Introduction

The pure spinor formulation of the superstring [1] has proven to be quite useful for quantis-

ing the superstring in a manifestly super-Poincaré covariant manner. At first, the ‘origin’ of

the formalism and its relation to the Green-Schwarz and Ramond-Neveu-Schwarz formula-

tions was very mysterious. This state of affairs has gradually improved (see e.g. [2 – 9]) and

by now the relation to the other versions of the superstring is better understood (although

some aspects are not yet completely satisfactory).

Recently, the relation between the (κ-symmetric) Green-Schwarz superstring [10] and

the pure spinor version was clarified [9]. The Green-Schwarz formulation of the open

superstring (or one of the two sectors of the closed superstring) has one reparameterisation

constraint, T , and 16 fermionic constraints, dα, half of which are second class and the

other half first class. The separation of the two types of constraints in a Lorentz-covariant

manner, preserving the full ten-dimensional symmetry, is not possible. Giving up manifest

covariance, the usual way to treat the dα constraints starts by constructing the Dirac

bracket from the second class constraints. Instead of this approach, an alternative is to

try to view the eight second class constraints as four first class constraints plus four gauge

fixing conditions. This “gauge unfixing” method is not very well known and it is not known

if it can always be applied (see e.g. [11 – 13]). In the case of the superstring however, the

method can be used [9] and the resulting set of twelve fermionic first class constraints can

then, together with T , be used to write a conventional BRST charge. This BRST charge

is not manifestly Lorentz covariant. However, after a similarity transformation it can be
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shown to be equal to the pure spinor BRST charge plus a topological term which decouples

due to the quartet mechanism [9].1

After the decoupling, the resulting BRST charge agrees with the pure spinor BRST

charge thereby establishing the equivalence between the two formalisms. The decoupling

of the topological quartet effectively removes the reparameterisation constraint together

with one of the fermionic constraints and the corresponding ghosts, and reinstates Lorentz

covariance. The remaining eleven bosonic ghosts build up a pure spinor — eleven being

the dimension of such a spinor in ten dimensions.

In this paper we attempt to extend the method of [9] to the case of the supermembrane

in eleven dimensions. There are two formulations of this object: a κ-symmetric version [14]

(analogous to the Green-Schwarz formulation for superstrings) and a pure spinor formu-

lation [15]. The supermembrane models are much more involved than the corresponding

superstring models, essentially because of the non-linear nature of the world volume theo-

ries. Nevertheless, progress can be made.

As a warm-up exercise and to fix our notation we treat the superparticle in eleven

dimensions in the next section. Then in section 3 we tackle the much more complicated su-

permembrane case. In the appendix we collect our conventions and some technical details.

2. Superparticle in eleven dimensions

In this section we discuss the superparticle in eleven dimensions. We show that the method

of [9] goes through essentially unchanged for this case. The superparticle provides a useful

stepping stone towards the much more difficult supermembrane which we treat in section 3.

2.1 The κ-symmetric superparticle

The superparticle has the following action [16]

S =

∫

dτ

(

PMΠM − 1

2
ePMP

M

)

=

∫

dτ
1

2e
ΠMΠM , (2.1)

where e is the einbein, ΠM = ẊM − iθΓM θ̇ with M = 0, . . . , 9, 11, θA is a 32 component

Majorana spinor, and ˙≡ ∂
∂τ (see the appendix for more details on our conventions). The

conjugate momenta to XM and θA are denoted PM and pA, respectively. The action (2.1)

is invariant under the (global) supersymmetry transformations

δθA = ǫA , δxM = i(ǫΓMθ) , δe = 0 = δPM , (2.2)

as well as under the following local fermionic symmetry (‘κ-symmetry’) [17]:

δθA = PM (ΓMκ)A , δxM = i(θΓMδθ) , δPM = 0 , δe = 4i(θ̇κ) . (2.3)

From the usual Dirac analysis one obtains the constraints

T = PMP
M ≈ 0 ,

dA = pA − iPM (ΓMθ)A ≈ 0 . (2.4)

1The quartet may actually not decouple completely in all sectors of the theory, see [9] for more details.
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Here T is the reparameterisation constraint. As is well-known, the 32 fermionic dA con-

straints comprise 16 first class and 16 second class constraints.

The basic Poisson brackets are

{PM ,XN} = −δN
M , {pA, θ

B} = −δB
A . (2.5)

From these results it follows that the non-vanishing Poisson brackets involving ΠM and dA

are

{dA, dB} = 2iΓM
ABPM , {dA,Π

M} = i(ΓM θ̇)A . (2.6)

2.2 The pure spinor superparticle

The pure spinor version of the superparticle in eleven dimensions was proposed in [15] (see

also [18]). The action is

S =

∫

dτ

(

PMẊ
M − pAθ̇

A + wAλ̇
A − 1

2
PMPM

)

. (2.7)

Here the bosonic (i.e. Grassmann even) spinor λA is a pure spinor, i.e. it satisfies λΓMλ = 0.

Such a spinor has 23 independent components (see the appendix for an explicit demonstra-

tion of this fact). The canonical momentum to λA, denoted wA, therefore has the gauge

invariance δwA = ΛM (ΓMλ)A induced by the constraint imposed on λA. This means that

wA and λA do not have a canonical (Lorentz covariant) Poisson bracket. However, from w

and λ one can form gauge-invariant Lorentz-covariant objects, e.g.

J = wλ , NMN =
1

2
(wΓMNλ) , (2.8)

which correspond to the λ (or ghost) charge, and the Lorentz current in the (w, λ) sector,

respectively. For calculations involving such gauge invariant expressions, one can effectively

use the canonical Poisson bracket {wA, λ
B} = −δB

A , as the non-covariant pieces cancel.

The BRST charge of the pure spinor model is Q = λAdA and satisfies {Q,Q} = 0.

2.3 Relation between the two formulations

We now discuss the relation between the above two formulations for the superparticle

(see [18] for an alternative, less direct, approach). In preparation for the supermembrane

case we restrict ourselves to a classical analysis (i.e.work at the level of Poisson brackets).

Our discussion closely parallels the ten-dimensional case discussed in [9].

The first step is to add a topological quartet (b, c, β, γ) to the pure spinor BRST charge

as Q → Q′ = λAdA + bγ. Here b, c are fermionic and β, γ are bosonic. The canonical

Poisson brackets between the new variables are

{b, c} = −1 , {β, γ} = −1 . (2.9)

If one performs the transformation

Q′′ = ecR/γQ′e−cR/γ ≡ Q′ +

{

cR

γ
,Q′

}

+
1

2!

{

cR

γ
,

{

cR

γ
,Q′

}}

+ · · · , (2.10)
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where

R = − i

2
PM (dΓM ξ) , (2.11)

and then uses the result

{Q,R} = (λξ)T , (2.12)

with the identification γ = −(λξ), one finds that

Q′′ = λAdA −R+ cT + bγ . (2.13)

In this way, the reparameterisation constraint T has been introduced into the pure spinor

formulation.

The next step is to relate the BRST charge Q′′ to the BRST charge in the κ-symmetric

version of the superparticle. As discussed in the introduction this is done by replacing the

second class constraints in the κ-symmetric formulation by first class constraints (which

upon gauge fixing would give back the second class constraints). This can be done as

in [9] by first splitting the dA constraints into two parts (e.g. using lightcone variables);

one containing 16 first class constraints and one containing 16 second class constraints,

and then ‘gauge unfixing’ the 16 second class constraints into 8 first class constraints.

However, rather than following this path one can try to directly find a suitable set of first

class constraints.

It is clear that Q = λAdA with λ pure corresponds to a set of 23 first class constraints,

since λA has 23 independent components and {Q,Q} = 0. To try to extend this number one

can make the Ansatz Q0 = λAdA +βAdA where βA can depend on PM , but since PMP
M is

a constraint and {dA, PMPM} = 0 one can take the dependence to be linear, and make the

Ansatz βAdA = i
2PM (dγM ξ). One finds {Q0, Q0} = −2(λξ)T − i

2PM (ξΓMξ)T . To simplify

this result one can require ξΓMξ = 0. Adding also the T constraint and its associated (b, c)

ghosts one sees that

Q̃ = λAdA +
i

2
PM (ξΓMd) + cT − b(λξ) (2.14)

satisfies {Q̃, Q̃} = 0 and agrees with the above expression (2.13) provided λξ = −γ. An

explicit solution to ξΓMξ = 0 and λξ = −γ can of course be found; e.g. in the U(5) basis

(cf. appendix A), ξ− = −γ/λ+ with all the other components of ξ being zero is such a

solution.

Above we started from the pure spinor model and arrived at the κ-symmetric model.

The argument can of course just as easily be run in reverse. However, in the supermem-

brane case treated in the next section it turns out to be easier to start from the pure spinor

model. As in [9], one can also map the two actions (2.1) and (2.7); we will not repeat the

details here.

3. Supermembrane in eleven dimensions

In this section we discuss the extension of the method described above to the supermem-

brane. As expected, the supermembrane case is significantly more involved.
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3.1 The κ-symmetric supermembrane

A κ-symmetric action for the supermembrane in eleven dimensions was written down by

Bergshoeff, Sezgin and Townsend [14]. In a flat supergravity background the action is

S =

∫

dτd2σ

[

PMΠM
0 + e0(PMP

M +M) + eiΠM
i PM

− i

2
ǫIJK(θΓMN∂Iθ)

[

ΠM
J ΠN

K +iΠM
J (θΓN∂Kθ)−

1

3
(θΓM∂Jθ)(θΓ

N∂Kθ)
]

]

= −1

2

∫

d3ζ

[√−g(gIJΠM
I ΠJM − 1) (3.1)

+iǫIJK(θΓMN∂Iθ)
[

ΠM
J ΠN

K +iΠM
J (θΓN∂Kθ)−

1

3
(θΓM∂Jθ)(θΓ

N∂Kθ)
]

]

,

where ζI = (τ, σi) with I, J,K = 0, 1, 2, and i, j = 1, 2. Also,

ΠM
I = ∂IX

M − iθΓM∂Iθ , (3.2)

PM is the conjugate momentum to XM , and

M = det(ΠN
i ΠjN ) =

1

2
ǫijΠM

i ΠN
j ǫ

klΠkMΠlN . (3.3)

The two forms of the action above are related by integrating out PM and using the param-

eterisation [19]

gij = γij − N iN j

N2
, g0i =

N i

N2
, g00 = − 1

N2
, (3.4)

together with the identifications

e0 =
N

2
√
γ
, ei = −N i , (3.5)

and the result [19]

M = γ(γijΠM
i ΠjM − 1) . (3.6)

The above action is invariant under global supersymmetry as well as under a local

fermionic κ-symmetry (we do not show this here; see e.g. [14, 15, 20] for details).

Of particular interest for us is the hamiltonian analysis of the constraints derived

from the above action. Such an analysis was performed in [19]. The reparameterisation

constraints are

T = KMK
M +M − 2ǫijΠM

i (dΓM∂jθ) ≈ 0 ,

Ti = KMΠM
i − d∂iθ ≈ 0 , (3.7)

where

KM = PM − iǫij(θΓMN∂iθ)

(

ΠN
j +

i

2
θΓN∂jθ

)

, (3.8)
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and M is as in (3.3). The fermionic constraints are

dA = pA − iPM (ΓMθ)A − i

2
ǫij(ΓMNθ)A

[

ΠM
i ΠN

j + iΠM
i (θΓN∂jθ) (3.9)

−1

3
(θΓM∂iθ)(θΓ

N∂jθ)

]

− 1

2
ǫij(θΓMN∂iθ)(Γ

Mθ)A

[

ΠN
j +

2i

3
θΓN∂jθ

]

≈0 .

The basic canonical Poisson brackets are

{PM (σ),XN (ρ)} = −δN
Mδ

2(σ − ρ) , {pA(σ), θB(ρ)} = −δB
Aδ

2(σ − ρ) , (3.10)

which imply the following non-vanishing Poisson brackets between KM , ΠM
i and dA:

{dA(σ), dB(ρ)} = 2iKMΓM
AB δ

2(σ − ρ) + iǫijΠiMΠjNΓMN
AB δ2(σ − ρ) ,

{dA(σ),KM (ρ)} = −2iǫijΠN
i (ΓMN∂jθ)A δ

2(σ − ρ) ,

{dA(σ),ΠM
i (ρ)} = 2i(ΓM∂iθ)A δ

2(σ − ρ) , (3.11)

{KM (σ),KN (ρ)} = −iǫij(∂iθΓMN∂jθ) δ
2(σ − ρ) ,

{KM (σ),ΠN
i (ρ)} = −δN

M

∂

∂ρi
δ2(σ − ρ) .

Here, all fields on the right hand side depend on ρ. To obtain these results it is important

to keep track of the dependent variable of the fields, writing Υ(σ) = Υ(ρ + (σ − ρ)) for

any field that depends on σ and Taylor expanding, as well as making use of the relation

x∂xδ(x) = −δ(x).

3.2 The pure spinor supermembrane

A pure spinor version of the supermembrane in eleven dimensions was proposed by

Berkovits in ref. [15]. This model is based on the action (in our conventions)

S =

∫

dτd2σ

[

KMΠM
0 − d∂0θ + w∂0λ

− i

2
ǫIJK(θΓMN∂Iθ)(Π

M
J ΠN

K +iΠM
J (θΓN∂Kθ)−

1

3
(θΓM∂Jθ)(θΓ

N∂Kθ)

−1

2

[

KMK
M +M + 2ǫij(dΓM∂iθ)Π

M
j + 2ǫij(wΓM∂iλ)ΠM

j

+4iǫij(wΓM∂iθ)(λΓM∂jθ) − 4iǫij(w∂iθ)(λ∂jθ)
]

(3.12)

+ ei
[

KMΠM
i − d∂iθ + w∂iλ

]

]

.

Note that this action reduces to that of the superparticle by throwing away all dependence

on σi. Analogously to the superparticle case, the proposed BRST charge is

Q =

∫

d2σλAdA , (3.13)

where λA satisfies the pure spinor constraint λΓMλ = 0. However, in contrast to the

superparticle case, further constraints are needed to make Q nilpotent and the action

BRST invariant. As shown in [15] the following constraints also seem to be required

(λΓMNλ)ΠN
i = 0 , λ∂iλ = 0 . (3.14)

– 6 –
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These constraints are more puzzling and appear to be at a different level from the pure

spinor constraint. Note that the constraints (3.14) are BRST closed.

In a more recent development, a lagrangian approach was taken which leads to the same

constraints [21] (see also [22]). This analysis was performed essentially without making any

a priori assumptions, which lends additional support to the constraints (3.14). Still, the

exact form of the full set of constraints deserves further study.

We should also mention another attempt to understand the origin of the pure spinor

supermembrane [20]. In this paper the goal was to derive the pure spinor model starting

from a “doubled” version of the κ-symmetric supermembrane. This approach was partially

successful, but was not as complete as that for the superstring [8], due to the intricate

nonlinear nature of the supermembrane.

3.3 Relation between the two formulations

A natural first step to relate the above two formulations is to try to find a supermembrane

generalisation of the superparticle result (2.11). We propose that the following expression

provides such a generalisation

R =

∫

d2σ

[

− i

2
KM (dΓMξ) +

i

4
ǫijΠM

i ΠN
j (dΓMN ξ)

− 1

2
ǫijΠM

i (ξΓM∂jθ)(wλ) − 1

4
ǫijΠM

i (ξΓMNR∂jθ)(wΓNRλ) (3.15)

− 1

2
ǫijΠM

i (ξ∂jθ)(wΓMλ) − 1

4
ǫijΠM

i (ξΓNR∂jθ)(wΓMNRλ)

]

.

A few comments about this expression are in order. The second line of this expression

is invariant under the gauge transformation δwA = ΛM (ΓMλ)A arising from the fact

that λ is pure, i.e. λΓMλ = 0. This is easy to see since it involves the gauge invari-

ant expressions encountered previously in the superparticle case (2.8). The first term on

the third line is not invariant unless one imposes additional conditions. Provided that

(λΓMNλ)ΠM
i = 0 it is invariant. However, even with this additional condition the second

term on the third line of (3.15) is not invariant; instead its variation becomes proportional

to ΛP ΠP
i ǫ

ij(ξΓMN∂jθ)(λΓMNλ). If one imposes the stronger condition λΓMNλ = 0 (or

the slightly weaker condition (λΓMNλ)ΠP
i = 0), it is invariant, but this possibility ap-

pears disfavoured since in previous work [15, 21] constraints stronger than (3.14) were not

necessary. Another possibility is that {Q, δR} = 0, i.e. R is only gauge invariant up to

BRST closed terms. Although some terms in {Q, δR} can be cancelled if one also imposes

λ∂iλ = 0, it seems that not all terms can be made to vanish, even using Fierz identities.

Therefore we are left with a puzzle regarding the final term in (3.15). For the remainder

of this paper we will assume that either the stronger condition λΓMNλ = 0 can be used

in our calculations, or that there is another way to make the final term in (3.15) gauge

invariant so that the non-covariant pieces in the bracket with Q vanish. Note that the first

possibility is not in conflict with the superparticle result since in our calculations λΓMNλ

is always multiplied by expressions that vanish in the superparticle limit.

– 7 –
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A strong argument in favour of (3.15) is related to its behaviour under the double

dimensional reduction to the d = 10 type IIA superstring case. Under this reduction one has

ΠM
2 = δM

11 , ∂2θ = 0 , K11 = Λ11 = 0 . (3.16)

It is easy to check that when these conditions are fulfilled, R as written above is gauge

invariant. Furthermore, by implementing the conditions (3.16) into R leads to

Rd=10 =

∫

dσ1

[

− i

2
Km(dΓmξ) +

i

2
Πm

1 (dΓmΓ11ξ)

− 1

2
(ξΓ11∂1θ)(wλ) − 1

4
(ξΓ11Γnr∂1θ)(wΓnrλ) (3.17)

− 1

2
(ξ∂1θ)(wΓ11λ) − 1

4
(ξΓnr∂1θ)(wΓ11Γnrλ)

]

,

where m,n, r = 0, . . . , 9. Splitting ξA = (ξα, ξ̃α̇) and similarly for dA, θA, wA and λA, we

find R = ξαGα + ξ̃α̇G̃α̇ where

Gα = − i

2
Km(dγm)α +

i

2
Πm(dγm)α

− 1

2
(∂θ)α(wλ) − 1

4
(γmn∂θ)α(wγmnλ) ,

G̃α̇ = − i

2
Km(d̃γm)α̇ − i

2
Πm(d̃γm)α̇

− 1

2
(∂̄θ̃)α̇(w̃λ̃) − 1

4
(γmn∂̄θ̃)α̇(w̃γmnλ̃) , (3.18)

which precisely corresponds to the ten-dimensional result [2, 23], taking into account

differences in conventions (we also used the superstring equations of motion for θ and θ̃).

From (3.15) a lengthy calculation leads to

{Q,R} =

∫

d2σ[(λξ)T − 2(λΓMξ)ǫ
ijΠM

i Tj] , (3.19)

where

T = KMKM +M − 2ǫijΠM
i (dΓM∂jθ) − 2ǫijΠM

i (wΓM∂jλ)

−4iǫij(w∂iθ)(λ∂jθ) + 4iǫij(wΓM∂iθ)(λΓM∂jθ) (3.20)

Ti = KMΠM
i − d∂iθ + w∂iλ .

This is one of the main results of this paper. Note that the T ’s (3.20) are ghost completions

of the T ’s (3.7).

The expressions in (3.20) are precisely the combinations that appear in the third and

fourth, and the fifth lines in the action (3.12). This is a good indication that we are on the

right track, and gives further support to our proposal for R.

If one imposes λΓMξ = 0 and λξ = 1, one finds {Q,R} = T . This implies that R is an

eleven-dimensional analogue of the (non-covariant) superstring b ghost (the superparticle

limit of which was discussed in [18].) It is non-covariant in the sense of the Y -formalism [23,

24]. It may be possible to extend it to a covariant expression along the lines of [25, 26].

– 8 –
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A natural strategy would be to also try to find an Ri such that {Q,Ri} = Ti + · · · .
An attempt based on Ri =

∫

d2σΠM
i (dΓMξ) + · · · fails since one is forced to impose

λΓMξ = 0 = λΓMNξ and λξ 6= 0. However, when (λΓMλ) = 0,

(λξ)2 =
3

2
(λΓMξ)(λΓMξ) +

1

4
(λΓMNξ)(λΓMN ξ) . (3.21)

Thus, there appears to be no such Ri.

As in the superparticle case one can perform transformations using ecξRξ/γξ where the ξ

subscript indicate that we perform several transformations using R’s with various different

fixed ξ’s. This gives leading terms in Q′ of the form

Q′ =
∑

ξ

cξTξ + · · · (3.22)

where Tξ is a certain combination of T and the eleven TM ≡ ǫijΠM
i Tj .

Possibly the most natural approach would be to pick T and two fixed M ’s, ± say,

T± = ǫijΠ±
i Tj , so that

Q′ = cT + c+T
+ + c−T

− + · · · . (3.23)

Although not covariant and not based on the usual form of reparameterisation con-

straints (3.7) this would be part of a viable form for a BRST charge arising from the

κ-symmetric formulation. If one insists on covariance one could keep all the TM so that

Q′ = cT + cMT
M + · · · . (3.24)

In this case the constraints would be reducible, but it may be profitable to keep covariance

i.e. to work with TM = ǫijΠM
i Tj . It is easy to check that, generically, the two sets of

constraints based on TM or Ti define the same constraint surface.

Reducible constraints satisfy certain relations between them (see [27] for a detailed

exposition). To find these for the constraints at hand we closely follow the analysis in [20].

(The set of reducible constraints in that work are not quite the same as ours; it may be

possible to find a closer link between the two sets.)

To find the first order reducibility functions ZM
p where p = 1, . . . , 9 we want to solve

Zp
MT

M = 0 . (3.25)

Since TM = ǫijΠM
i Tj the above equation can be written as ǫijY p

i Tj = 0 with Y p
i = Zp

MΠM
i .

The solution is Y p
i = CpTi where Cp can be put equal to 1 by rescaling Zp. In other

words, we need

Zp · Πi = Ti . (3.26)

This is solved by Zp = Xp +W where Xp is a nine-vector orthogonal to the plane spanned

by Πi and W is a solution to the above equations lying in the Πi plane, i.e. W = aiΠi.

Now, Mija
j = Ti where Mij = Πi · Πj so the solution is ai = (M−1)ijTj . As in [20] one

can easily show that the reducibility is first order: cpZp = 0 implies cp = 0.

Thus, we seem to be close to finding a Q′ which can be related to a BRST charge in

the κ-symmetric formulation, either of the form (3.23) or (3.24).
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However, perhaps somewhat surprisingly we have not been able to find a solution to

the condition λξ = 0 and λΓMξ = δM
N for a fixed N that would be required for this

approach to work. If one only imposes λΓMλ = 0 it is almost possible, but putting nine

components of λΓMξ to zero, the solutions we have found automatically puts the rest of

λΓMξ to zero (but not λξ). If one also imposes λΓMNλ = 0 the situation is worse: in our

solutions setting five components of λΓMξ to zero puts the remaining components to zero

and also forces λξ to be zero.

The equations one needs to solve are rather complicated (see appendix A) so it is

possible that there are solutions that can give (3.23) or (3.24), but even if this is not the

case, one can use other ξ’s and obtain a more general form (3.22) where the Tξ’s are more

complicated expressions obtained from a parameterisation of independent “components”

of ξ. It seems that it can still be viewed as the leading part of a viable form of the BRST

charge in the κ-symmetric model, but it is far from the most natural choice. This point

should be studied further. Also, we only calculated the lowest order terms in the similarity

transformation. Although general theorems seem to guarantee that the construction will

work also at higher orders since we started from a BRST charge that satisfies {Q,Q} = 0,

it may be profitable to work out the details.

Above we only studied how the BRST charges are related. In the same way as in [9]

it should also be possible to relate the two actions. Although our work supports the pure

spinor formulation it does not really clarify what constraints should be imposed on λ.

Partly this is a consequence of the fact that we started from the pure-spinor formulation

and tried to obtain the κ-symmetric formulation rather than the other way around. It may

be fruitful to start from the κ-symmetric formulation and try to obtain the pure-spinor

model. However, as we have seen it appears that in order to obtain the pure-spinor model

one should not use the canonical form of the constraints.
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A. Conventions and technical details

In this appendix we collect our conventions and some technical details. Our conventions

are closely related to those of [20], but with some minor differences.

Spacetime indices are labeled by capital letters from the middle of the alphabet:

M,N, . . . = 0, . . . , 9, 11. Spinor indices are labeled by capital letters from the beginning of

the alphabet: A,B, . . . = 1, . . . , 32. The gamma matrices (ΓM )AB satisfy the usual alge-

bra: {ΓM ,ΓN} = 1
2(ΓMΓN + ΓNΓM ) = ηMN . Indices can be lowered using CAB = −CBA

via (ΓM )AB = CAD(ΓM )DB . We do not write CAB explicitly as the position of the indices

should always be clear from the context. Also, we do not write the spinor indices explicitly
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in fully contracted expressions. ΓM1···Mp is antisymmetric for p = 0, 3, 4 and symmetric for

p = 2, 3, 5; these form a basis for the bispinor ΨAΥB as

ΨAΥB =
1

32

[

(ΨΥ)CAB + (ΨΓS1Υ)(ΓS1
)AB − 1

2!
(ΨΓS1S2Υ)(ΓS1S2

)AB −

− 1

3!
(ΨΓS1S2S3Υ)(ΓS1S2S3

)AB +
1

4!
(ΨΓS1S2S3S4Υ)(ΓS1S2S3S4

)AB +

+
1

5!
(ΨΓS1S2S3S4S5Υ)(ΓS1S2S3S4S5

)AB

]

. (A.1)

We sometimes find it useful to decompose our expressions into a (non-covariant) U(5)

basis. Alternative decompositions are SO(8) and SO(9). Under SO(11) → U(5) a vector

decomposes as VM → (va, va, v
11) where

va =
V a + iV a+5

2
, va =

V a − iV a+5

2
, v11 = V 11 . (A.2)

From which it follows that e.g. UMV
M = 2uav

a + 2uava +u11v11. Tensors are decomposed

in a similar way.

A spinor ΨA splits as (ψα, ψα̇) and then further as ψα → (ψ+, ψa, ψ[ab]) and ψα̇ →
(ψ−, ψa, ψ

[ab]) where a, b = 1, . . . , 5.

In the U(5) basis the gamma matrices can be chosen as

(γ1)A
B

=
σ1 + iσ2

2
⊗ 1l ⊗ 1l ⊗ 1l ⊗ 1l , (γ2)A

B
= σ3 ⊗ σ1 + iσ2

2
⊗ 1l ⊗ 1l ⊗ 1l ,

(γ3)A
B

= σ3 ⊗ σ3 ⊗ σ1 + iσ2

2
⊗ 1l ⊗ 1l , (γ4)A

B
= σ3 ⊗ σ3 ⊗ σ3 ⊗ σ1 + iσ2

2
⊗ 1l ,

(γ5)A
B

= σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ1 + iσ2

2
, CAB = iσ2 ⊗ σ1 ⊗ iσ2 ⊗ σ1 ⊗ iσ2 , (A.3)

(γ1)A
B =

σ1 − iσ2

2
⊗ 1l ⊗ 1l ⊗ 1l ⊗ 1l , (γ2)A

B = σ3 ⊗ σ1 − iσ2

2
⊗ 1l ⊗ 1l ⊗ 1l ,

(γ3)A
B = σ3 ⊗ σ3 ⊗ σ1 − iσ2

2
⊗ 1l ⊗ 1l , (γ4)A

B = σ3 ⊗ σ3 ⊗ σ3 ⊗ σ1 − iσ2

2
⊗ 1l ,

(γ5)A
B = σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ1 − iσ2

2
, (Γ11)A

B
= σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ,

where σ1,2,3 are the usual Pauli matrices

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

. (A.4)

Using the U(5) decomposition, we can write formulæ for λξ, λΓMξ and λΓMNξ in the

following form

λξ = λ+ξ− − λ−ξ+ + λaξa − λaξ
a +

1

2
λabξ

ab − 1

2
λabξab

λΓ11ξ = λ+ξ− + λ−ξ+ + λaξa + λaξ
a +

1

2
λabξ

ab +
1

2
λabξab
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λγaξ = −λ+ξa − λaξ+ + λbξ
ab + λabξb +

1

4
ǫabcdeλbcξde

λγaξ = λ−ξa + λaξ
− − λbξab − λabξ

b − 1

4
ǫabcdeλ

bcξde

λγaΓ11ξ = λ+ξa + λaξ+ + λbξ
ab + λabξb −

1

4
ǫabcdeλbcξde

λγaΓ
11ξ = λ−ξa + λaξ

− + λbξab + λabξ
b − 1

4
ǫabcdeλ

bcξde (A.5)

λγabξ = −λ+ξab − λabξ+ − 1

2
ǫabcde(λcdξe + λeξcd)

λγabξ = λ−ξab + λabξ
− +

1

2
ǫabcde(λ

cdξe + λeξcd)

λγa
bξ = λaξb + λbξ

a + λbcξ
ca + λacξcb

+
1

2
δa
b

(

λ+ξ− + λ−ξ+ − λcξc − λcξ
c +

1

2
λcdξ

cd +
1

2
λcdξcd

)

Sometimes we find it useful to decompose further into U(4). In this case we write

λa → (λa′

, κ+) , λa → (λa′ , κ−) ,

λab → (λa′b′ , κa′

) , λab → (λa′b′ , κa′) , (A.6)

and similarly for ξA. The corresponding formulæ for λξ, λΓMξ and λΓMNξ in the U(4)

basis can be obtained from (A.5) by inserting the expressions (A.6) (we will not write the

result explicitly). To simplify the notation, below we drop the prime and use a, b = 1, . . . , 4.

For example, in the U(4) basis one can write explicit solutions to the λΓMλ = 0

constraint, e.g.

λa =
1

λ+κeλe

[

κ−κaκbλb + λabλbκ
cλc − λ+λabλbcκ

c − 1

8
κaǫbcdeλbcλde

−1

2
κaλ+λbcλbc +

1

8
λabλbǫ

cdefλcdλef − 1

2
λ+λ−ǫabcdλbλcd

]

,

κa = − 1

κeλe

[

λ−λ+λa − κ−λabκ
b − λabλ

bcλc −
1

2
λ+λabcdκ

bλcd

]

, (A.7)

κ+ =
ǫabcdλabλcd − 8κaλa

8λ+
,

which shows that λ has 23 independent components. It is also possible to write down

explicit solutions to the λΓMλ = 0 = λΓMNλ constraints, e.g.

λa =
1

2λ+
ǫabcdκbλcd , κ+ =

1

8λ+
ǫabcdλabλcd ,

λa =
1

2λ−
ǫabcdκ

bλcd , κ− =
1

8λ−
ǫabcdλ

abλcd , (A.8)

λab = 2
κ[aǫb]cdeκcλde + 2λ+λ−ǫabcdλcd

ǫfghkλfgλhk
,

which shows that such a λ has 16 independent components.
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[22] P. Fré and P.A. Grassi, Free differential algebras, rheonomy and pure spinors,

arXiv:0801.3076.

[23] I. Oda and M. Tonin, On the b-antighost in the pure spinor quantization of superstrings,

Phys. Lett. B 606 (2005) 218 [hep-th/0409052].

[24] I. Oda and M. Tonin, Y-formalism in pure spinor quantization of superstrings, Nucl. Phys. B

727 (2005) 176 [hep-th/0505277].

[25] N. Berkovits, Multiloop amplitudes and vanishing theorems using the pure spinor formalism

for the superstring, JHEP 09 (2004) 047 [hep-th/0406055].

[26] N. Berkovits and N. Nekrasov, Multiloop superstring amplitudes from non-minimal pure

spinor formalism, JHEP 12 (2006) 029 [hep-th/0609012].

[27] M. Henneaux and C. Teitelboim, Quantization of gauge systems, Princeton University Press,

Princeton U.S.A. (1994).

[28] U. Gran, GAMMA: a Mathematica package for performing Gamma-matrix algebra and Fierz

transformations in arbitrary dimensions, hep-th/0105086.

– 14 –

http://jhep.sissa.it/stdsearch?paper=05%282006%29041
http://arxiv.org/abs/hep-th/0603004
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB763%2C1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB763%2C1
http://arxiv.org/abs/hep-th/0606171
http://arxiv.org/abs/0801.3076
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB606%2C218
http://arxiv.org/abs/hep-th/0409052
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB727%2C176
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB727%2C176
http://arxiv.org/abs/hep-th/0505277
http://jhep.sissa.it/stdsearch?paper=09%282004%29047
http://arxiv.org/abs/hep-th/0406055
http://jhep.sissa.it/stdsearch?paper=12%282006%29029
http://arxiv.org/abs/hep-th/0609012
http://arxiv.org/abs/hep-th/0105086

